Search results for " 60L50"
showing 2 items of 2 documents
Geometric rough paths on infinite dimensional spaces
2022
Similar to ordinary differential equations, rough paths and rough differential equations can be formulated in a Banach space setting. For $\alpha\in (1/3,1/2)$, we give criteria for when we can approximate Banach space-valued weakly geometric $\alpha$-rough paths by signatures of curves of bounded variation, given some tuning of the H\"older parameter. We show that these criteria are satisfied for weakly geometric rough paths on Hilbert spaces. As an application, we obtain Wong-Zakai type result for function space valued martingales using the notion of (unbounded) rough drivers.
Solution properties of the incompressible Euler system with rough path advection
2021
The present paper aims to establish the local well-posedness of Euler's fluid equations on geometric rough paths. In particular, we consider the Euler equations for the incompressible flow of an ideal fluid whose Lagrangian transport velocity possesses an additional rough-in-time, divergence-free vector field. In recent work, we have demonstrated that this system can be derived from Clebsch and Hamilton-Pontryagin variational principles that possess a perturbative geometric rough path Lie-advection constraint. In this paper, we prove the local well-posedness of the system in $L^2$-Sobolev spaces $H^m$ with integer regularity $m\ge \lfloor d/2\rfloor+2$ and establish a Beale-Kato-Majda (BKM)…